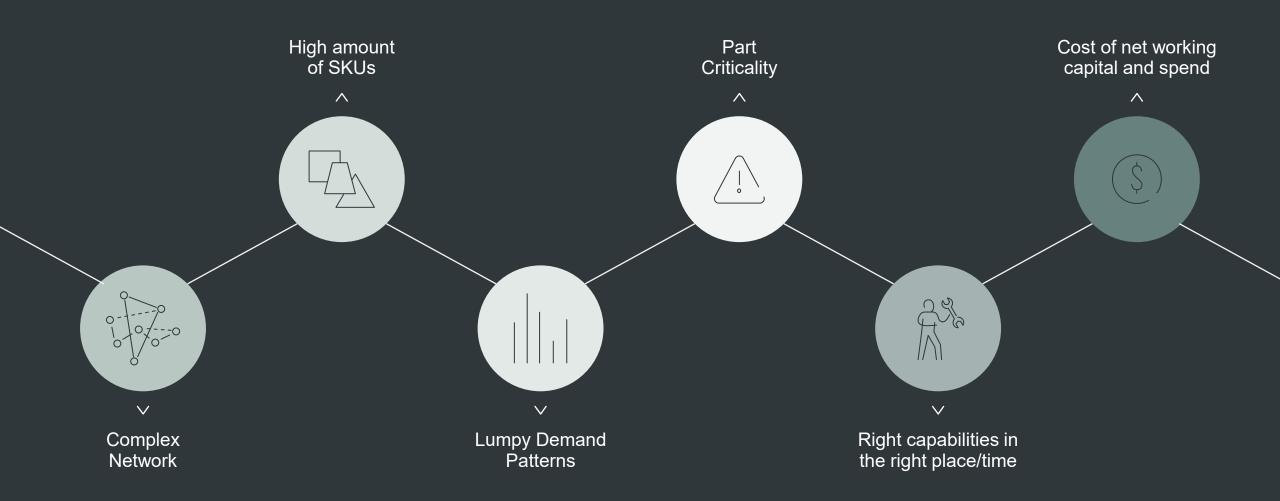


Balancing asset availability, reliability and net working capital with SAP IBP for MRO

"When we combine all the figures across sectors, they suggest that the cost of an hour's downtime has doubled over five years..."



The key objective of MRO planning is finding the right balance between asset availability, reliability and Operating costs

M_ SAP

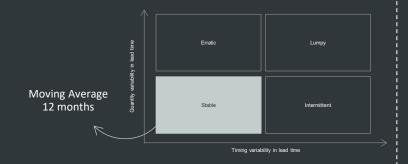
Key challenges of Maintenance, Repair and Operation

3

We need to consolidate demand from both *corrective and preventive* maintenance activities

TACTICAL PLANNING | SAP IBP Focus

Preventive Maintenance


 Preventive maintenance schedules are maintained in SAP PM or Project Systems

Corrective Maintenance

Requires structured segmentation, stocking and replenishment policies

MAINTENANCE EXECUTION -----

Predictive Maintenance

 A data-based technique enabling companies to foresee equipment breakdown in time

Long-Term Planning 2-5 years

Strategic Stocking & Service Footprint

_Asset Lifecycle Management

Tactical MRO Planning 2-18 months

What, Where & How Much to Stock

Tactical Plan for Service, Tools & Manning

Preventive & Corrective Demand Outlook

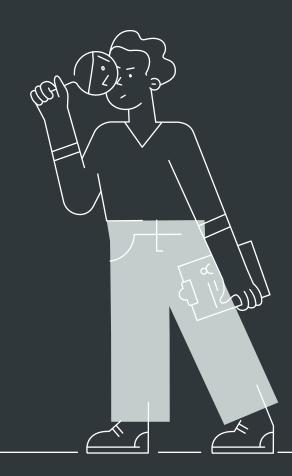
Overview of Constraints

Balancing
--- Across Time & --------Bottlenecks

Supplier Collaboration

Maintenance Execution

0-6 weeks


Predictive Maintenance

Execution of Work Orders

Okay, so what does this look like in more detail?

A coherent Tactical MRP process answers the four questions: what, where, how to plan, and how much to stock

What to stock

Where to stock

How to plan the stock

How much to stock

What to stock

Examples of strategic reasons to stock

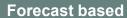
- Criticality of products (e.g. high-impact spare parts)
- Contractual agreements on stock
- Required for safety reasons (lifesaving products)

Examples of business reasons to stock

- Profitability / Impact
- Is the lead time of the product shorter than the customer accepted lead time?
- Hedging (expectation of price increase/inflation)

Examples of *supply chain* reasons to stock or not stock

- Production related / bi-product
- Does the product have a high impact on own production? (machine stops etc.)
- Low demand variability which enables levelling and production stability


	Production	Finished goods Central DC	Finished goods Regional DC
Strategic Reasons	Contractual agreements Critical part & Safety reasons	Contractual agreements Critical part & Safety reasons	Contractual agreements Critical part & Safety reasons
Business Reasons	Dependencies Procurement timings	Lead time responsivenessCost efficiency by centralisation.	Lead time responsiveness Cost of regional warehouse
Supply Chain Reasons	Production Bi-productsBatch Size, Change over times	Transportation times Transportation constraints	Transportation times Transportation constraints

How to plan the stock

BASS

Planning principles

Forecast driven MRP

Plan based (Cyclic planning)

Reorder point (ROP)

Demand driven MRP (DDMRP)

Make/Purchase to order

Low forecast error

- · Forecast with safety stock or safety time
- The MRP logic creates upstream-dependent demand

Stabilize plan and reduce variance

- Shift the variance from the production plan to the stock level by having a fixed production plan/purchase plan every week
- The fixed volume should be based on the forecast

Medium to high forecast error:

- Reorder point with safety stock
- · Reorder point logic creates dependent demand within lead time

Medium to high forecast error:

- Pull-based supply generation based on actual consumption
- Define stocking levels in a dynamic way driven by actual customer orders buffering against volatility of forecasts

Customers can accept delivery time:

- Purchase to order, Assembly to order, make to order etc.
- Planning BOM can be used to create dependent demand

How much to stock

A certain number of data inputs is required to calculate either safety stock or safety time

Input that can impact the service and net working capital balance

Demand variability

Forecast accuracy

Spike order procedure

Order sizes and cost price

Transportation frequency

Supply variability

Number of variants

Storage cost

Criticality

Lead time

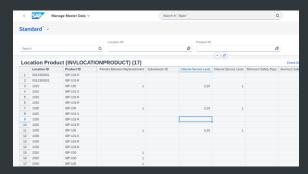
Increase service level

Decrease inventory

Model using a multi-echelon approach to optimize across the network

The goal is to balance service level and inventory with an optimal business impact

M_ SAP


A coherent *Tactical MRO process* answers the four questions: what, where, how to plan, and how much to stock

What to stock

Determining **what** to stock is driven by:

- Strategic/criticality reasons
- Business reasons
- Supply chain reasons

SAP IBP master data management

Where to stock

Determining **where** to stock is driven by:

- Centralisation to reduce costs
- Decentralisation to increase lead time responsiveness

SAP IBP Supply Chain Network

How to plan the stock

How to plan the replenishment is driven by a segmentation approach:

- 1. Plan-based planning
- 2. Consumption-based planning

SAP IBP Segment Models

How much to stock

Determining **what** to stock is driven by:

- Uncertainty in quantity
- Uncertainty in time

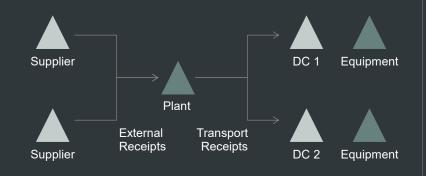
SAP IBP MRO Algorithms

Tactical MRO creates visibility of projected capacity usage, distribution and expected inventory levels

Capacity Usage

Determining the expected capacity consumption and resulting utilization of:

- Warehouse / storage resources
- Operators
- Suppliers / vendors



Parts Requirements

Creating a supply plan for downstream and upstream parts requirement:

- Distribution Requirements
- Purchasing Requirements
- Supplier forecasting & collaboration

Projected Inventory

Projecting future inventory levels based on total part demand and incoming supply:

- · Projected inventory in volume
- Projected inventory in value

How can we support this with SAP IBP?

MRO Parts & Resources Planning Process with SAP IBP

SAP S/4HANA / ECC

SAP EAM Plant Maintenance: PM

- Plant
- Maintenance Plans, Items
- Task List
- Workforce (Resources)
- Equipment, Functional Location

SAP Project System: PS

- Work Breakdown Structures
- Network Activities
- Materials Requirements
- Workforce (Resources)
- Equipment, Functional Location

SAP IBP – Tactical MRO

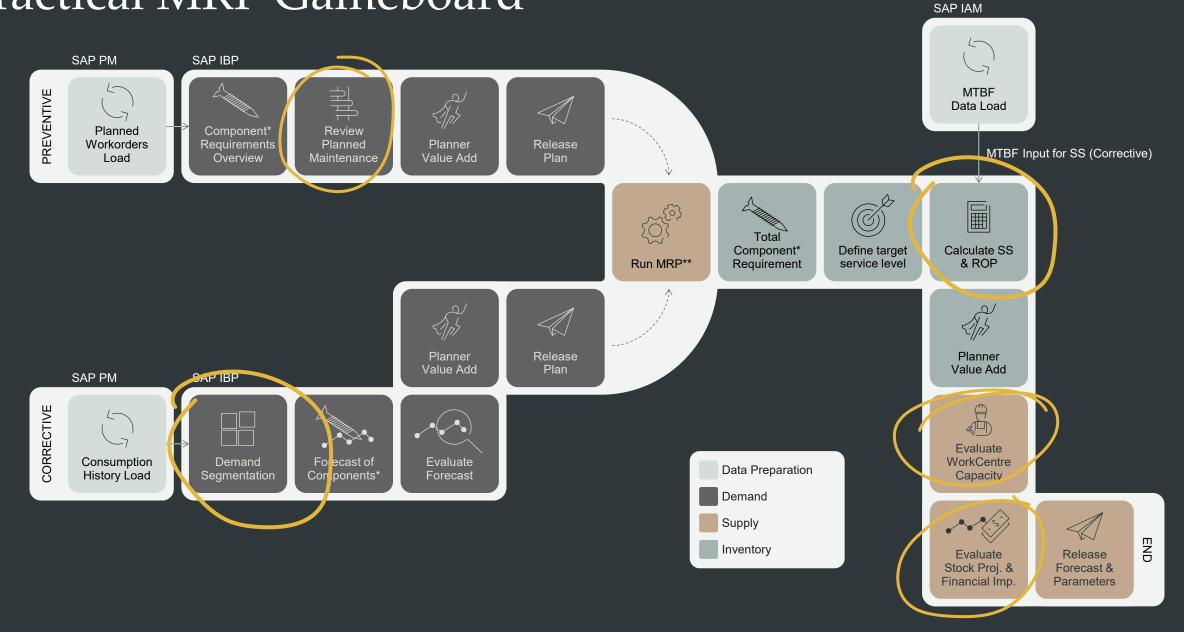
Demand Planning

- Service Parts Usage History
- Preventive Maintenance Inputs

Inventory Planning

 Safety Stock & Inventory Levels for Spare Parts

Supply Planning


- Service Parts Supply Plan
- Rough-cut Capacity Planning

IBP Config & Master Data ModelingSeparate Planning Area:

- · Asset as Customer
- · Service Part as Product
- · Labor for Maintenance as Resource

- Demand Variability
- Supply Uncertainty
- Replenishment frequency
- · Lot sizes

Tactical MRP Gameboard

Can you recognize these common challenges in maintenance, repair & operations planning?

Experience too often that spare parts are missing when needed?

Face it difficult to **managing a diverse and extensive list of SKUs** large product portfolios for spare parts, with no good segmentation model to help?

Experience **high costs of keeping sufficient inventory** when dealing with a large number of SKUs and high service levels?

Find it increasingly difficult to have the right human resources and capabilities available at the right place and time?

Are you struggling to maintain **a large and complex distribution network** with both global and local hubs to quickly respond to demand?

Struggle with accurately forecasting due to highly erratic and lumpy demand patterns?

Do you..

Thank you. Implement Consulting Group

Contact

Mathias Mikalsen, Partner
Phone: +45 5138 7408

Email: mmm@implement.dk